4.1. DEFINICION ESPACIOS VECTORIALES Y SUS PROPIEDADES.
Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios vectoriales se les llama vectores. Sobre los vectores pueden realizarse dos operaciones: escalarse (multiplicarlos por un escalar) y sumarse. Estas dos operaciones se tienen que ceñir a un conjunto de axiomas que generalizan las propiedades comunes de las tuplas de números reales así como de los vectores en el espacio euclídeo. Un concepto importante es el de dimensión.
Históricamente, las primeras ideas que condujeron a los espacios vectoriales modernos se remontan al siglo XVII: geometría analítica, matrices y sistemas de ecuaciones lineales. La primera formulación moderna y axiomática se debe a Giuseppe Peano, a finales del siglo XIX. Los siguientes avances en la teoría de espacios vectoriales provienen del análisis funcional, principalmente de los espacios de funciones. Los problemas de Análisis funcional requerían resolver problemas sobre la convergencia. Esto se hizo dotando a los espacios vectoriales de una adecuada topología, permitiendo tener en cuenta cuestiones de proximidad y continuidad. Estos espacios vectoriales topológicos, en particular los espacios de Banach y los espacios de Hilbert tienen una teoría más rica y complicada.
Los espacios vectoriales tienen aplicaciones en otras ramas de la matemática, la ciencia y la ingeniería. Se utilizan en métodos como las series de Fourier, que se utiliza en las rutinas modernas de compresión de imágenes y sonido, o proporcionan el marco para resolver ecuaciones en derivadas parciales. Además, los espacios vectoriales proporcionan una forma abstracta libre de coordenadas de tratar con objetos geométricos y físicos, tales como tensores, que a su vez permiten estudiar las propiedades locales de variedades mediante técnicas de linealización.
Propiedades del espacio vectorial.
Hay una serie de propiedades que se demuestran fácilmente a partir de los axiomas del espacio vectorial. Algunas de ellas se derivan de la teoría elemental de grupos, aplicada al grupo (aditivo) de vectores: por ejemplo, el vector nulo 0 Є V, y el opuesto -v de un vector v son únicos. Otras propiedades se pueden derivar de la propiedad distributiva, por ejemplo, la multiplicación por el escalar cero da el vector nulo y ningún otro escalar multiplicado por un vector da cero:
Propiedad
Significado
Unicidad del vector nulo
Unicidad del opuesto de un vector
Producto por el escalar cero
0 v = 0. El 0 es el único escalar que cumple esta propiedad.
Producto de un escalar por el vector nulo
a 0 = 0
Opuesto del producto de un vector por un escalar
- (a v) = (-a) v = a (-v)
viernes, 30 de octubre de 2009
3.9 Solucion de un sistema de ecuaciones lineales por la regla de cramer
a) Regla de Cramer
Es aplicable si el sistema tiene igual número de ecuaciones que de incógnitas (n=m) y es compatible determinado (a un s.e.l. qu cumple estas condiciones se le llama un sistema de Cramer).
El valor de cada incógnita xi se obtiene de un cociente cuyo denominador es el determinate de la matriz de coeficientes, y cuyo numerador es el determinante que se obtiene al cambiar la columna i del determinante anterior por la columna de los términos independientes.
Ejemplo
b) Por inversión de la matriz de coeficientes
Si A·X = B, entonces X = A-1B.
Es aplicable si el sistema tiene igual número de ecuaciones que de incógnitas (n=m) y es compatible determinado.
3.10 Aplicación de las matrices y los determinantes
Un sistema de ecuaciones lineales (s.e.l.) es un conjunto de m ecuaciones con n incógnitas de la forma:
donde aij son los coeficientes, xi las incógnitas y bi son los términos independientes. Representación matricial de un s.e.l.
El anterior sistema se puede expresar en forma matricial, usando el producto de matrices de la forma:
De modo simplificado suele escribirse Am,n · Xn,1 = Bm,1 , donde la matriz A de orden m x n se denomina matriz de coeficientes. También usaremos la matriz ampliada, que representaremos por A', que es la matriz de coeficientes a la cual le hemos añadido la columna del término independiente:
Discusión de un s.e.l.: Teorema de Rouché-Fröbenius Dado un sistema de ecuaciones con matriz de coeficientes A, matriz ampliada A' y rangos respectivos r y r' se verifican:
1. El sistema de ecuaciones es compatible cuando rango(A) = rango(A')
2. En caso de compatibilidad existen dos posibilidades:
Si r = r' = n (nº de incógnitas) Þ Sistema compatible determinado (una única solución)
Si r = r' < n (nº de incógnitas) Þ Sistema compatible indeterminado (infinitas soluciones)
Al valor n - r se le llama grado de libertad del sistema.
Resolución de un s.e.l.
a) Regla de Cramer
Es aplicable si el sistema tiene igual número de ecuaciones que de incógnitas (n=m) y es compatible determinado (a un s.e.l. qu cumple estas condiciones se le llama un sistema de Cramer).
El valor de cada incógnita xi se obtiene de un cociente cuyo denominador es el determinate de la matriz de coeficientes, y cuyo numerador es el determinante que se obtiene al cambiar la columna i del determinante anterior por la columna de los términos independientes.
Ejemplo
b) Por inversión de la matriz de coeficientes
Si A·X = B, entonces X = A-1B.
Es aplicable si el sistema tiene igual número de ecuaciones que de incógnitas (n=m) y es compatible determinado.
a) Regla de Cramer
Es aplicable si el sistema tiene igual número de ecuaciones que de incógnitas (n=m) y es compatible determinado (a un s.e.l. qu cumple estas condiciones se le llama un sistema de Cramer).
El valor de cada incógnita xi se obtiene de un cociente cuyo denominador es el determinate de la matriz de coeficientes, y cuyo numerador es el determinante que se obtiene al cambiar la columna i del determinante anterior por la columna de los términos independientes.
Ejemplo
b) Por inversión de la matriz de coeficientes
Si A·X = B, entonces X = A-1B.
Es aplicable si el sistema tiene igual número de ecuaciones que de incógnitas (n=m) y es compatible determinado.
3.10 Aplicación de las matrices y los determinantes
Un sistema de ecuaciones lineales (s.e.l.) es un conjunto de m ecuaciones con n incógnitas de la forma:
donde aij son los coeficientes, xi las incógnitas y bi son los términos independientes. Representación matricial de un s.e.l.
El anterior sistema se puede expresar en forma matricial, usando el producto de matrices de la forma:
De modo simplificado suele escribirse Am,n · Xn,1 = Bm,1 , donde la matriz A de orden m x n se denomina matriz de coeficientes. También usaremos la matriz ampliada, que representaremos por A', que es la matriz de coeficientes a la cual le hemos añadido la columna del término independiente:
Discusión de un s.e.l.: Teorema de Rouché-Fröbenius Dado un sistema de ecuaciones con matriz de coeficientes A, matriz ampliada A' y rangos respectivos r y r' se verifican:
1. El sistema de ecuaciones es compatible cuando rango(A) = rango(A')
2. En caso de compatibilidad existen dos posibilidades:
Si r = r' = n (nº de incógnitas) Þ Sistema compatible determinado (una única solución)
Si r = r' < n (nº de incógnitas) Þ Sistema compatible indeterminado (infinitas soluciones)
Al valor n - r se le llama grado de libertad del sistema.
Resolución de un s.e.l.
a) Regla de Cramer
Es aplicable si el sistema tiene igual número de ecuaciones que de incógnitas (n=m) y es compatible determinado (a un s.e.l. qu cumple estas condiciones se le llama un sistema de Cramer).
El valor de cada incógnita xi se obtiene de un cociente cuyo denominador es el determinate de la matriz de coeficientes, y cuyo numerador es el determinante que se obtiene al cambiar la columna i del determinante anterior por la columna de los términos independientes.
Ejemplo
b) Por inversión de la matriz de coeficientes
Si A·X = B, entonces X = A-1B.
Es aplicable si el sistema tiene igual número de ecuaciones que de incógnitas (n=m) y es compatible determinado.
3.7 Inversa de una matriz cuadrada a travez de la adjunta
Es fácil comprobar que aplicando la definición se tiene:
En este último caso, para acordarnos de todos los productos posibles y sus correspondientes signos se suele usar la Regla de Sarrus, que consiste en un esquema gráfico para los productos positivos y otro para los negativos:
3.8 Solucion de un sistema de ecuaciones lineales a travez de la inversa
Sea A una matriz cuadrada y aij uno cualquiera de sus elementos. Si se suprime la fila i y la columna j de la matriz A se obtiene una submatriz Mij que recibe el nombre de matriz complementaria del elemento aij.
Dada la matriz
la matriz complementaria del elemento a11 es la matriz que resulta de suprimir en la matriz A la fila 1 y la columna 1; es decir:
Llamamos menor complementario del elemento aij al determinante de la matriz complementaria del elemento aij , y se representa por aij
Se llama adjunto de aij , y se representa por por Aij, al número (–1)i+jaij.
El determinante de una matriz cuadrada es igual a la suma de los elementos de una fila o columna cualquiera, multiplicados por sus adjuntos.
Por ejemplo, si desarrollamos un determinante de orden n por los adjuntos de la 1ª fila se tiene:
La demostración es muy fácil, basta con aplicar la definición de determinante a ambos lados de la igualdad.
Nota Esta regla rebaja el orden del determinante que se pretende calcular en una unidad. Para evitar el cálculo de muchos determinantes conviene elegir líneas con muchos ceros
Es fácil comprobar que aplicando la definición se tiene:
En este último caso, para acordarnos de todos los productos posibles y sus correspondientes signos se suele usar la Regla de Sarrus, que consiste en un esquema gráfico para los productos positivos y otro para los negativos:
3.8 Solucion de un sistema de ecuaciones lineales a travez de la inversa
Sea A una matriz cuadrada y aij uno cualquiera de sus elementos. Si se suprime la fila i y la columna j de la matriz A se obtiene una submatriz Mij que recibe el nombre de matriz complementaria del elemento aij.
Dada la matriz
la matriz complementaria del elemento a11 es la matriz que resulta de suprimir en la matriz A la fila 1 y la columna 1; es decir:
Llamamos menor complementario del elemento aij al determinante de la matriz complementaria del elemento aij , y se representa por aij
Se llama adjunto de aij , y se representa por por Aij, al número (–1)i+jaij.
El determinante de una matriz cuadrada es igual a la suma de los elementos de una fila o columna cualquiera, multiplicados por sus adjuntos.
Por ejemplo, si desarrollamos un determinante de orden n por los adjuntos de la 1ª fila se tiene:
La demostración es muy fácil, basta con aplicar la definición de determinante a ambos lados de la igualdad.
Nota Esta regla rebaja el orden del determinante que se pretende calcular en una unidad. Para evitar el cálculo de muchos determinantes conviene elegir líneas con muchos ceros
3.6 Propiedades de los determinantes
Si todos los elementos de una línea (fila o columna) de una matriz cuadrada se descomponen en dos sumandos, entonces su determinante es igual a la suma de dos determinantes que tienen en esa línea los primeros y segundos sumandos, respectivamente, y en las demás los mismos elementos que el determinante inicial.
det (L1 + L'1, L2, L3...) = det (L1, L2, L3...) + det (L'1, L2, L3...)
Ejemplo
· Si se multiplican todos los elementos de una línea de una matriz cuadrada por un número, el determinante queda multiplicado por dicho número.
det (k·L1, L2, L3...) = k·det (L1, L2, L3...)
Ejemplo
· Si A y B son dos matrices cuadradas del mismo orden, entonces se verifica:
det (A·B) = det (A) · det (B)
Ejemplo
· Si permutamos dos líneas paralelas de una matriz cuadrada, su determinante cambia de signo con respecto al inicial:
det (L1, L2, L3...) = -det (L2, L1, L3...)
Ejemplo
· Si una matriz cuadrada tiene una línea con todos los elementos nulos, su determinante vale cero.
det (0, L2, L3...) = 0
Ejemplo
· Si una matriz cuadrada tiene dos líneas paralelas iguales, su determinante vale cero.
det (L1, L1, L3...) = 0
Ejemplo
· Si dos líneas paralelas de una matriz cuadrada son proporcionales, su determinante se anula.
det (L1, k·L1, L3...) = 0
Ejemplo
· Si una fila (columna) de una matriz cuadrada es combinación lineal de las restantes filas (columnas), su determinante vale cero.
det (L1, L2, a·L1 + b·L2...) = 0
Ejemplo
· Si a una línea de una matriz cuadrada se le suma otra paralela, su determinante no varía.
det (F1 + F2, F2, F3) = det (F1, F2, F3) + det (F2, F2, F3) = det (F1, F2, F3)
Ejemplo
· Si a una línea de una matriz cuadrada se le suma otra paralela multiplicada por un número, su determinante no varía.
det (L1 + k· L2, L2, L3...) = det (L1, L2, L3...) + det (k·L2, L2, L3...) = det (L1, L2, L3...) + 0
Si todos los elementos de una línea (fila o columna) de una matriz cuadrada se descomponen en dos sumandos, entonces su determinante es igual a la suma de dos determinantes que tienen en esa línea los primeros y segundos sumandos, respectivamente, y en las demás los mismos elementos que el determinante inicial.
det (L1 + L'1, L2, L3...) = det (L1, L2, L3...) + det (L'1, L2, L3...)
Ejemplo
· Si se multiplican todos los elementos de una línea de una matriz cuadrada por un número, el determinante queda multiplicado por dicho número.
det (k·L1, L2, L3...) = k·det (L1, L2, L3...)
Ejemplo
· Si A y B son dos matrices cuadradas del mismo orden, entonces se verifica:
det (A·B) = det (A) · det (B)
Ejemplo
· Si permutamos dos líneas paralelas de una matriz cuadrada, su determinante cambia de signo con respecto al inicial:
det (L1, L2, L3...) = -det (L2, L1, L3...)
Ejemplo
· Si una matriz cuadrada tiene una línea con todos los elementos nulos, su determinante vale cero.
det (0, L2, L3...) = 0
Ejemplo
· Si una matriz cuadrada tiene dos líneas paralelas iguales, su determinante vale cero.
det (L1, L1, L3...) = 0
Ejemplo
· Si dos líneas paralelas de una matriz cuadrada son proporcionales, su determinante se anula.
det (L1, k·L1, L3...) = 0
Ejemplo
· Si una fila (columna) de una matriz cuadrada es combinación lineal de las restantes filas (columnas), su determinante vale cero.
det (L1, L2, a·L1 + b·L2...) = 0
Ejemplo
· Si a una línea de una matriz cuadrada se le suma otra paralela, su determinante no varía.
det (F1 + F2, F2, F3) = det (F1, F2, F3) + det (F2, F2, F3) = det (F1, F2, F3)
Ejemplo
· Si a una línea de una matriz cuadrada se le suma otra paralela multiplicada por un número, su determinante no varía.
det (L1 + k· L2, L2, L3...) = det (L1, L2, L3...) + det (k·L2, L2, L3...) = det (L1, L2, L3...) + 0
3.4 Calculo de la inversa de una matriz
Una matriz cuadrada que posee inversa se dice que es inversible o regular; en caso contrario recibe el nombre de singular.
Porpiedades de la inversión de matrices
La matriz inversa, si existe, es única
A-1A=A·A-1=I
(A·B) -1=B-1A-1
(A-1) -1=A
(kA) -1=(1/k·A-1
(At) –1=(A-1) t
Observación Podemos encontrar matrices que cumplen A·B = I, pero que B·A¹ I, en tal caso, podemos decir que A es la inversa de B "por la izquierda" o que B es la inversa de A "por la derecha".
Hay varios métodos para calcular la matriz inversa de una matriz dada:
Directamente (Ejemplo)
Usando determinantes
Por el método de Gauss-Jordan
3.5 Definicion de determinante de una matriz
Dada una matriz cuadrada A, se llama matriz adjunta de A, y se representa por Adj(A), a la matriz de los adjuntos, Adj(A) = (Aij).
Ejemplo
Si tenemos una matriz tal que det (A) ¹ 0, se verifica:
Esto es fácil probarlo puesto que sabemos que la suma de los productos de los elementos de una fila por sus adjuntos es el valor del determinante, y que la suma de los productos de los elementos de una fila por los adjuntos de otra fila diferente es 0 (esto sería el desarrollo de un determinante que tiene dos filas iguales por los adjuntos de una de ellas).
Ejemplo
Determinantes
Dada una matriz cuadrada
se llama determinante de A, y se representa por A ó det(A), al número:
, con
(Sn es el grupo de las permutaciones del conjunto {1, 2,.. n}, e i(s) es la signatura de la permutación)
También se suele escribir:
Una matriz cuadrada que posee inversa se dice que es inversible o regular; en caso contrario recibe el nombre de singular.
Porpiedades de la inversión de matrices
La matriz inversa, si existe, es única
A-1A=A·A-1=I
(A·B) -1=B-1A-1
(A-1) -1=A
(kA) -1=(1/k·A-1
(At) –1=(A-1) t
Observación Podemos encontrar matrices que cumplen A·B = I, pero que B·A¹ I, en tal caso, podemos decir que A es la inversa de B "por la izquierda" o que B es la inversa de A "por la derecha".
Hay varios métodos para calcular la matriz inversa de una matriz dada:
Directamente (Ejemplo)
Usando determinantes
Por el método de Gauss-Jordan
3.5 Definicion de determinante de una matriz
Dada una matriz cuadrada A, se llama matriz adjunta de A, y se representa por Adj(A), a la matriz de los adjuntos, Adj(A) = (Aij).
Ejemplo
Si tenemos una matriz tal que det (A) ¹ 0, se verifica:
Esto es fácil probarlo puesto que sabemos que la suma de los productos de los elementos de una fila por sus adjuntos es el valor del determinante, y que la suma de los productos de los elementos de una fila por los adjuntos de otra fila diferente es 0 (esto sería el desarrollo de un determinante que tiene dos filas iguales por los adjuntos de una de ellas).
Ejemplo
Determinantes
Dada una matriz cuadrada
se llama determinante de A, y se representa por A ó det(A), al número:
, con
(Sn es el grupo de las permutaciones del conjunto {1, 2,.. n}, e i(s) es la signatura de la permutación)
También se suele escribir:
3.3 Clasificacion de matricez
Hay algunas matrices que aparecen frecuentemente y que según su forma, sus elementos, ... reciben nombres diferentes :
Tipo de matriz
Definición
Ejemplo
FILA
Aquella matriz que tiene una sola fila, siendo su orden 1×n
COLUMNA
Aquella matriz que tiene una sola columna, siendo su orden m×1
RECTANGULAR
Aquella matriz que tiene distinto número de filas que de columnas, siendo su orden m×n ,
TRASPUESTA
Dada una matriz A, se llama traspuesta de A a la matriz que se obtiene cambiando ordenadamente las filas por las columnas.Se representa por At ó AT
OPUESTA
La matriz opuesta de una dada es la que resulta de sustituir cada elemento por su opuesto. La opuesta de A es -A.
NULA
Si todos sus elementos son cero. También se denomina matriz cero y se denota por 0m×n
CUADRADA
Aquella matriz que tiene igual número de filas que de columnas, m = n, diciendose que la matriz es de orden n.Diagonal principal : son los elementos a11 , a22 , ..., ann Diagonal secundaria : son los elementos aij con i+j = n+1Traza de una matriz cuadrada : es la suma de los elementos de la diagonal principal tr A.
Diagonal principal : Diagonal secundaria :
SIMÉTRICA
Es una matriz cuadrada que es igual a su traspuesta.A = At , aij = aji
ANTISIMÉTRICA
Es una matriz cuadrada que es igual a la opuesta de su traspuesta.A = -At , aij = -aji Necesariamente aii = 0
DIAGONAL
Es una matriz cuadrada que tiene todos sus elementos nulos excepto los de la diagonal principal
ESCALAR
Es una matriz cuadrada que tiene todos sus elementos nulos excepto los de la diagonal principal que son iguales
IDENTIDAD
Es una matriz cuadrada que tiene todos sus elementos nulos excepto los de la diagonal principal que son iguales a 1. Tambien se denomina matriz unidad.
TRIANGULAR
Es una matriz cuadrada que tiene todos los elementos por encima (por debajo) de la diagonal principal nulos.
ORTOGONAL
Una matriz ortogonal es necesariamente cuadrada e invertible : A-1 = AT La inversa de una matriz ortogonal es una matriz ortogonal.El producto de dos matrices ortogonales es una matriz ortogonal.El determinante de una matriz ortogonal vale +1 ó -1.
NORMAL
Una matriz es normal si conmuta con su traspuesta. Las matrices simétricas, antisimétricas u ortogonales son necesariamente normales.
INVERSA
Decimos que una matriz cuadrada A tiene inversa, A-1, si se verifica que :A·A-1 = A-1·A = I
Para establecer las reglas que rigen el cálculo con matrices se desarrolla un álgebra semejante al álgebra ordinaria, pero en lugar de operar con números lo hacemos con matrices.
Hay algunas matrices que aparecen frecuentemente y que según su forma, sus elementos, ... reciben nombres diferentes :
Tipo de matriz
Definición
Ejemplo
FILA
Aquella matriz que tiene una sola fila, siendo su orden 1×n
COLUMNA
Aquella matriz que tiene una sola columna, siendo su orden m×1
RECTANGULAR
Aquella matriz que tiene distinto número de filas que de columnas, siendo su orden m×n ,
TRASPUESTA
Dada una matriz A, se llama traspuesta de A a la matriz que se obtiene cambiando ordenadamente las filas por las columnas.Se representa por At ó AT
OPUESTA
La matriz opuesta de una dada es la que resulta de sustituir cada elemento por su opuesto. La opuesta de A es -A.
NULA
Si todos sus elementos son cero. También se denomina matriz cero y se denota por 0m×n
CUADRADA
Aquella matriz que tiene igual número de filas que de columnas, m = n, diciendose que la matriz es de orden n.Diagonal principal : son los elementos a11 , a22 , ..., ann Diagonal secundaria : son los elementos aij con i+j = n+1Traza de una matriz cuadrada : es la suma de los elementos de la diagonal principal tr A.
Diagonal principal : Diagonal secundaria :
SIMÉTRICA
Es una matriz cuadrada que es igual a su traspuesta.A = At , aij = aji
ANTISIMÉTRICA
Es una matriz cuadrada que es igual a la opuesta de su traspuesta.A = -At , aij = -aji Necesariamente aii = 0
DIAGONAL
Es una matriz cuadrada que tiene todos sus elementos nulos excepto los de la diagonal principal
ESCALAR
Es una matriz cuadrada que tiene todos sus elementos nulos excepto los de la diagonal principal que son iguales
IDENTIDAD
Es una matriz cuadrada que tiene todos sus elementos nulos excepto los de la diagonal principal que son iguales a 1. Tambien se denomina matriz unidad.
TRIANGULAR
Es una matriz cuadrada que tiene todos los elementos por encima (por debajo) de la diagonal principal nulos.
ORTOGONAL
Una matriz ortogonal es necesariamente cuadrada e invertible : A-1 = AT La inversa de una matriz ortogonal es una matriz ortogonal.El producto de dos matrices ortogonales es una matriz ortogonal.El determinante de una matriz ortogonal vale +1 ó -1.
NORMAL
Una matriz es normal si conmuta con su traspuesta. Las matrices simétricas, antisimétricas u ortogonales son necesariamente normales.
INVERSA
Decimos que una matriz cuadrada A tiene inversa, A-1, si se verifica que :A·A-1 = A-1·A = I
Para establecer las reglas que rigen el cálculo con matrices se desarrolla un álgebra semejante al álgebra ordinaria, pero en lugar de operar con números lo hacemos con matrices.
3.2 Operaciones con matricez
Suma y diferencia de matrices
La suma de dos matrices A=(aij), B=(bij) de la misma dimensión, es otra matriz S=(sij) de la misma dimensión que los sumandos y con término genérico sij=aij+bij. Por tanto, para poder sumar dos matrices estas han de tener la misma dimensión.
La suma de las matrices A y B se denota por A+B.
Ejemplo
Propiedades de la suma de matrices
A + (B + C) = (A + B) + C (propiedad asociativa)
A + B = B + A (propiedad conmutativa)
A + 0 = A (0 es la matriz nula)
La matriz –A, que se obtiene cambiando de signo todos los elementos de A, recibe el nombre de matriz opuesta de A, ya que A + (–A) = 0.
La diferencia de matrices A y B se representa por A–B, y se define como: A–B = A + (–B)
Producto de una matriz por un número
El producto de una matriz A = (aij) por un número real k es otra matriz B = (bij) de la misma dimensión que A y tal que cada elemento bij de B se obtiene multiplicando aij por k, es decir, bij = k·aij.
Ejemplo
El producto de la matriz A por el número real k se designa por k·A. Al número real k se le llama también escalar, y a este producto, producto de escalares por matrices.
Propiedades del producto de una matriz por un escalar
k (A + B) = k A + k B (propiedad distributiva 1ª)
(k + h)A = k A + h A (propiedad distributiva 2ª)
k [h A] = (k h) A (propiedad asociativa mixta)
1·A = A (elemento unidad)
Propiedades simplificativas
A + C = B + C Û A = B.
k A = k B Û A = B si k es distinto de 0.
k A = h A Û h = k si A es distinto de 0.
Producto de matrices
Dadas dos matrices A y B, su producto es otra matriz P cuyos elementos se obtienen multiplacando las filas de A por las columnas de B. De manera más formal, los elementos de P son de la forma:
Es evidente que el número de columnas de A debe coincidir con el número de filas de B. Es más, si A tiene dimensión m´ n y B dimensión n´ p, la matriz P será de orden m´ p. Es decir:
Ejemplos
Propiedades del producto de matrices
A·(B·C) = (A·B)·C
El producto de matrices en general no es conmutativo. (
Producto de matrices
Dadas dos matrices A y B, su producto es otra matriz P cuyos elementos se obtienen multiplacando las filas de A por las columnas de B. De manera más formal, los elementos de P son de la forma:
Es evidente que el número de columnas de A debe coincidir con el número de filas de B. Es más, si A tiene dimensión m´ n y B dimensión n´ p, la matriz P será de orden m´ p. Es decir:
Ejemplos
Propiedades del producto de matrices
A·(B·C) = (A·B)·C
El producto de matrices en general no es conmutativo. (Ejemplo)
Si A es una matriz cuadrada de orden n se tiene A·In = In·A = A.
Dada una matriz cuadrada A de orden n, no siempre existe otra matriz B tal que A·B = B·A = In. Si existe dicha matriz B, se dice que es la matriz inversa de A y se representa por A–1 .
El producto de matrices es distributivo respecto de la suma de matrices, es decir: A·(B + C) = A·B + A·C
Consecuencias de las propiedades
Si A·B= 0 no implica que A=0 ó B=0. (Ejemplo)
Si A·B=A·C no implica que B = C. (Ejemplo)
En general (A+B)2 ¹ A2 + B2 +2AB,ya que A·B ¹ B·A.
En general (A+B)·(A–B) ¹ A2–B2, ya que A·B ¹ B·A.
Matrices iguales
Dos matrices A = (aij)m×n y B = (bij)p×q son iguales, sí y solo si, tienen en los mismo lugares elementos iguales, es decir :
Suma y diferencia de matrices
La suma de dos matrices A=(aij), B=(bij) de la misma dimensión, es otra matriz S=(sij) de la misma dimensión que los sumandos y con término genérico sij=aij+bij. Por tanto, para poder sumar dos matrices estas han de tener la misma dimensión.
La suma de las matrices A y B se denota por A+B.
Ejemplo
Propiedades de la suma de matrices
A + (B + C) = (A + B) + C (propiedad asociativa)
A + B = B + A (propiedad conmutativa)
A + 0 = A (0 es la matriz nula)
La matriz –A, que se obtiene cambiando de signo todos los elementos de A, recibe el nombre de matriz opuesta de A, ya que A + (–A) = 0.
La diferencia de matrices A y B se representa por A–B, y se define como: A–B = A + (–B)
Producto de una matriz por un número
El producto de una matriz A = (aij) por un número real k es otra matriz B = (bij) de la misma dimensión que A y tal que cada elemento bij de B se obtiene multiplicando aij por k, es decir, bij = k·aij.
Ejemplo
El producto de la matriz A por el número real k se designa por k·A. Al número real k se le llama también escalar, y a este producto, producto de escalares por matrices.
Propiedades del producto de una matriz por un escalar
k (A + B) = k A + k B (propiedad distributiva 1ª)
(k + h)A = k A + h A (propiedad distributiva 2ª)
k [h A] = (k h) A (propiedad asociativa mixta)
1·A = A (elemento unidad)
Propiedades simplificativas
A + C = B + C Û A = B.
k A = k B Û A = B si k es distinto de 0.
k A = h A Û h = k si A es distinto de 0.
Producto de matrices
Dadas dos matrices A y B, su producto es otra matriz P cuyos elementos se obtienen multiplacando las filas de A por las columnas de B. De manera más formal, los elementos de P son de la forma:
Es evidente que el número de columnas de A debe coincidir con el número de filas de B. Es más, si A tiene dimensión m´ n y B dimensión n´ p, la matriz P será de orden m´ p. Es decir:
Ejemplos
Propiedades del producto de matrices
A·(B·C) = (A·B)·C
El producto de matrices en general no es conmutativo. (
Producto de matrices
Dadas dos matrices A y B, su producto es otra matriz P cuyos elementos se obtienen multiplacando las filas de A por las columnas de B. De manera más formal, los elementos de P son de la forma:
Es evidente que el número de columnas de A debe coincidir con el número de filas de B. Es más, si A tiene dimensión m´ n y B dimensión n´ p, la matriz P será de orden m´ p. Es decir:
Ejemplos
Propiedades del producto de matrices
A·(B·C) = (A·B)·C
El producto de matrices en general no es conmutativo. (Ejemplo)
Si A es una matriz cuadrada de orden n se tiene A·In = In·A = A.
Dada una matriz cuadrada A de orden n, no siempre existe otra matriz B tal que A·B = B·A = In. Si existe dicha matriz B, se dice que es la matriz inversa de A y se representa por A–1 .
El producto de matrices es distributivo respecto de la suma de matrices, es decir: A·(B + C) = A·B + A·C
Consecuencias de las propiedades
Si A·B= 0 no implica que A=0 ó B=0. (Ejemplo)
Si A·B=A·C no implica que B = C. (Ejemplo)
En general (A+B)2 ¹ A2 + B2 +2AB,ya que A·B ¹ B·A.
En general (A+B)·(A–B) ¹ A2–B2, ya que A·B ¹ B·A.
Matrices iguales
Dos matrices A = (aij)m×n y B = (bij)p×q son iguales, sí y solo si, tienen en los mismo lugares elementos iguales, es decir :
III. MATRICES Y DETERMINANTES
3.1Definición de matriz
Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. SylvesterEl desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853En 1858, A. Cayley introduce la notación matricial como una forma abreviada de escribir un sistema de m ecuaciones lineales con n incógnitas.
Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Además de su utilidad para el estudio de sistemas de ecuaciones lineales, las matrices aparecen de forma natural en geometría, estadística, economía, informática, física, etc...
La utilización de matrices (arrays) constituye actualmente una parte esencial dn los lenguajes de programación, ya que la mayoría de los datos se introducen en los ordenadores como tablas organizadas en filas y columnas : hojas de cálculo, bases de datos,...
CONCEPTO DE MATRIZ
Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, suelen ser números ordenados en filas y columnas.
Se llama matriz de orden "m × n" a un conjunto rectangular de elementos aij dispuestos en m filas y en n columnas. El orden de una matriz también se denomina dimensión o tamaño, siendo m y n números naturales.
Las matrices se denotan con letras mayúsculas: A, B, C, ... y los elementos de las mismas con letras minúsculas y subíndices que indican el lugar ocupado: a, b, c, ... Un elemento genérico que ocupe la fila i y la columna j se escribe aij . Si el elemento genérico aparece entre paréntesis también representa a toda la matriz : A = (aij)
Cuando nos referimos indistíntamente a filas o columnas hablamos de lineas.El número total de elementos de una matriz Am×n es m·nEn matemáticas, tanto las Listas como las Tablas reciben el nombre genérico de matrices.
Una lista numérica es un conjunto de números dispuestos uno a continuación del otro.
Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. SylvesterEl desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853En 1858, A. Cayley introduce la notación matricial como una forma abreviada de escribir un sistema de m ecuaciones lineales con n incógnitas.
Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Además de su utilidad para el estudio de sistemas de ecuaciones lineales, las matrices aparecen de forma natural en geometría, estadística, economía, informática, física, etc...
La utilización de matrices (arrays) constituye actualmente una parte esencial dn los lenguajes de programación, ya que la mayoría de los datos se introducen en los ordenadores como tablas organizadas en filas y columnas : hojas de cálculo, bases de datos,...
CONCEPTO DE MATRIZ
Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, suelen ser números ordenados en filas y columnas.
Se llama matriz de orden "m × n" a un conjunto rectangular de elementos aij dispuestos en m filas y en n columnas. El orden de una matriz también se denomina dimensión o tamaño, siendo m y n números naturales.
Las matrices se denotan con letras mayúsculas: A, B, C, ... y los elementos de las mismas con letras minúsculas y subíndices que indican el lugar ocupado: a, b, c, ... Un elemento genérico que ocupe la fila i y la columna j se escribe aij . Si el elemento genérico aparece entre paréntesis también representa a toda la matriz : A = (aij)
Cuando nos referimos indistíntamente a filas o columnas hablamos de lineas.El número total de elementos de una matriz Am×n es m·nEn matemáticas, tanto las Listas como las Tablas reciben el nombre genérico de matrices.
Una lista numérica es un conjunto de números dispuestos uno a continuación del otro.
Suscribirse a:
Entradas (Atom)